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bstract

The microstructure of catalyst layers (CLs) is a naturally random medium and changes in it greatly affect the performance of polymer electrolyte
embrane fuel cells. In this paper, the mechanical analysis method, developed in Part I for understanding the mechanism of microstructure changes, is

urther extended to describe CLs as random three-phase microstructures. Microstructure reconstruction is accomplished using statistical information
rom experimental images of practical CLs. In the microscopically complex reconstructed microstructure, mechanical analysis is performed in
rder to understand the mechanism of changes caused by the cycling of start-up and shutdown during operation. Numerical simulation shows

hat, although different reconstructed microstructures have different changes, there have in common the competition between crack initiations in
hases and delamination between different phases in the CLs. This competition plays an important role in microstructure change and results in
erformance degradation, indicated by the decrease in connection length among different solid components in the CLs after certain duty cycles.
rown Copyright © 2007 Published by Elsevier B.V. All rights reserved.
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. Introduction

The lifetime of the components of polymer electrolyte
embrane fuel cells (PEMFCs) has a significant impact

n the commercial viability of PEMFCs for both station-
ry and transportation energy applications [1]. Improvement
n their durability can effectively reduce the cost of imple-

enting PEMFC systems. Recently, experimental studies have
een undertaken to understand the degradation mechanism
f PEMFCs. Many researchers [1–4] believe that microstruc-
ure changes in catalyst layers (CLs) can be factors in fuel
ell performance reduction. According to experiment results,
icrostructure changes in CLs include the following: cracks,
oss of carbon-supported catalyst clusters, dissolution of recast
lectrolyte (Nafion ionomer), catalyst particle migration, and
gglomerate coarsening [5] These phenomena are obvious

∗ Corresponding author. Tel.: +1 604 221 3050; fax: +1 604 221 3001.
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specially under dynamic operating conditions (transportation
pplications). So the microstructure, especially that of CLs,
s critical to durability improvement of PEMFCs [4]. There
s an urgent need to understand the underlying mechanism of

icrostructure changes in CLs and how their evolution reduces
erformance.

Microstructure changes may occur in several ways, such as
hemical degradation of the ionic conducting parts or mechan-
cal failure in CLs [5]. Although chemical degradation is a key
actor in microstructure changes, it has been suggested that
echanical damage is also highly important [6]. In our com-

anion paper [7], a mechanical analysis model is developed,
ased on the finite element method, to investigate microstruc-
ure changes in CLs. It is found that delaminations and cracks
ccur between phases in CLs as the effect of duty cycles. The
imulation presented in our companion paper [7] is based on

representation of microstructure in CLs, which, although it

ffers a basic understanding of the changes, suffers from many
orphological and associated physical limitations. In addition

o the simplicity of the structure, statistical information may

. All rights reserved.
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eviate from the change in a realistic random porous CL. For
nstance, the connection area between phases needs to be fur-
her enhanced and the components are not as complex as those
n a practical three-phase medium [8–10]. To better understand
he mechanism of practical random microstructure changes, a
econstruction of random microstructure should be utilized sys-
ematically.

In fact, the reconstruction of random media from limited
orphological information (statistical distributions, etc.) is an

ntriguing inverse problem. It is useful to reconstruct CLs using
nformation obtained from a two-dimensional (2D) micrograph
r image. A number of approaches have been taken to reconstruct
andom media [11,12]. Most of them use the filtering method
13] or stochastic optimization [14]. To take full advantage of
oth of these methods, we will apply them together to recon-
truct the microstructure based on the statistical information of
L images.

First, the reconstruction procedure is proposed: statistical
eature extraction based on an image process of CLs, initial
econstruction based on the filtering method, and stochastic opti-
ization to refine the results of the filtering method. Second,

he method developed in our companion work [7] is extended to
nvestigate the reconstructed microstructure changes. Finally,

basic understanding of the mechanism of microstructure
hanges in CLs is achieved through mechanical analysis. More-
ver, a common indication of performance degradation for
ifferent reconstruction results is observed in the simulation
esults.

. Microstructure reconstruction in CLs

The determination of the macroscopic behaviour of CLs, a
andom porous medium, can be performed in two steps: gen-
rating media with specific geometrical or statistical properties
nd solving the relevant set of equations. A reconstruction pro-
ess based on 2D transmission electron microscopy (TEM)
xperimental images is proposed. In this paper, the whole recon-
truction of the microstructure can be divided into three stages:
valuation of phase statistical information, initial reconstruc-
ion based on the filtering method, and stochastic optimization
econstruction of the microstructure.

.1. Evaluation of phase statistical information

A common starting point of the reconstruction procedure is
he statistical distribution and correlation relationship of phases.
or a CL, the phases include the electrolyte (Nafion), the C/Pt
gglomerate and pores. We want to generate a random porous CL
ith volume fractions and correlation functions of components.
he CL is assumed to be homogenous and isotropic, although the

atter is not essential. First, experimental images are processed to
et the statistical information. In this section, one method, based
n the physical properties of the different phases in CLs, is pro-

osed to segment the phases in 2D experiment results. In black
nd white figures, this information is conveyed by the gray value
r the intensity of different pixels. So we assume that every pixel
epresents an individual phase and the intensity of the pixel can

c

t
m

ources 175 (2008) 712–723 713

e used to indicate its properties. Then three intervals of inten-
ity from 0 to 255 should be determined to distinguish different
hases.

The intensity of Nafion is assumed to be greater than that
f the C/Pt agglomerate and lower than that of the pores. To
etermine these two boundary values, the physical properties
nd mass ratios of the different phases must be used. When the
EM or scanning electron microscopy (SEM) images of a CL are

aken, the mass ratio ε, as well as the density ρ, of the different
hases is known. So the volume ratio (δ) of the different phases
an be determined as follows:

δ1 = 1 − δ2 − δ3, δ2 = ρCLεNafion

ρNafion
,

δ3 = ρCLεC

ρC
+ ρCLεPt

ρPt
(1)

here δ2, εNafion, and ρNafion are volume ratio, mass ratio, and
ensity of Nafion, respectively; εC and ρC are the mass ratio and
ensity of carbon, respectively;εPt and ρPt are the mass ratio and
ensity of platinum, respectively; δ1 and δ3 are the volume ratio
f the pores and C/Pt agglomerate, respectively; and ρCL is the
ensity of the whole CL.

When the CL is assumed to be homogenous, statistical aver-
ges can be replaced by volume averages. When it is assumed
o be isotropic, these volume averages can be replaced by sur-
ace averages. Hence, the use of thin sections is justified. So
he volume ratios, which can be regarded as area ratios in the
D experimental figures, can be used to evaluate the bound-
ries of intensity. Fig. 1(a), a typical image of a CL by Xie
t al. [15], is used to illustrate the process of determining
oundaries of intensity. In their fabrication, catalyst inks were
repared by mixing catalyst powder (20 wt% Pt on a Vulcan
C-72, E-TEK), Nafion solution, and isopropanol. The CL in
ig. 1(a) contains 30 wt% Nafion 115. In fact, when Xie et
l. [15] were verifying the performance with the macrohomo-
eneous model, the volume fraction of different compositions
n the CL were reproduced based on the constitutive relation-
hip between weight fractions and volume fractions (Eq. (1));
hat is, C/Pt:Nafion:pore = 46.7:25.7:27.6. The distribution of
he intensity of different pixels is shown in Fig. 1(b). Ia and Ib
re the segment phases in the image. Based on the assumption
f isotropic random media, area fractions of the CL components
hould be the same as the volume fractions in the experiments.
o Ia and Ib are searched for from 0 to 255 to best approach

hese area fractions. Ia is determined to be 94 and Ib is 119. In
act, the area fractions of the components, based on intensity, are
3.4:26.7:30.3 (C/Pt:Nafion:pore). When these two values have
een determined, Fig. 1(a) can be filtered to a black-and-white
gure to indicate different phases, as shown in Fig. 2 where white
ixels are the reference phases, specifically (a) pore, (b) Nafion,
nd (c) C/Pt agglomerate. At this point, the image segmentation
as been accomplished based on the mass ratios, densities of

omponents, and intensity of pixels.

As mentioned previously, the presence of different phases in
he sample is measured. At each point (pixel) within the experi-

ental sample, an overall phase function Z(x) at each point x is
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Fig. 1. (a) The TEM image of a cathode CL from Ref. [15] and (b) intensity distribution of the TEM image.

Fig. 2. The segmentation of the TEM image (Fig. 1(a)) based on intensity, where the white pixels are (a) pores, (b) Nafion, and (c) C/Pt agglomerates.
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efined as

(x) =

⎧⎪⎨
⎪⎩

ω1 if x belongs to pore

ω2 if x belongs to Nafion

ω3 if x belongs to C/Pt agglomerate

(2)

The set of values {ωk, k = 1, 2, 3} is arbitrary; however, in
his paper, this set is equal to the sequence of the first three inte-
ers {0, 1, 2}. As x varies, Z(x) describes a discrete stochastic
rocess. Assuming a homogenous and isotropic medium implies
hat this process is stationary; that is, it has a constant mean and
ts autocovariance function is invariant under arbitrary transla-
ions. Theoretically, the overall average of Z(x) and the two-point
verall correlation function can be introduced as

= Z(x)

Z(u) = (Z(x) − χ)(Z(x + u) − χ)

(Z(x)2 − χ2)
(3)

here RZ(u) is the two-point correlation function, which rep-
esents the probability that two points at a distance x are both
he same phase; the overbar denotes the statistical average; and

is the lag vector. For a statistically homogenous CL, χ is a
onstant and RZ(u) is a function only of the lag vector, u; that
s, it is independent of the location vector x. Furthermore, if the
L is isotropic, the correlation function RZ(u) is a function only
f the norm of u.

This is a theoretical declaration of the overall mean and two-
oint correlation function. It is still necessary to mention the
rocedure by which they are computed from 2D experimental
mages of an actual CL. To minimize finite size effects, periodic
oundaries and more experimental figures are utilized during
valuation. In Fig. 2, the M × N (781 × 781) pixels 2D image is
efined as a discrete valued function Z(x, y), where Z(x, y) is the
ame as Z(x) in Eq. (2). The three-phase image S is divided into
wo halves, S1 and S2, which satisfy S1∪S2 = S and S1∩S2 = ∅.
o calculate RZ(u), S1 is first translated by a distance u along

he x-axis; it yields S1(+u). The spatial average indicated in Eq.
3) is replaced by an intersection of images:

(x, y)Z(x + u, y) = S1(+u) ∩ S

The other operations indicated in Eq. (3) are then performed
lgebraically. Fig. 3 shows the result from the three-phase
mages in Fig. 2. General practical recommendations for the

easurements of these correlation functions can be found in
ef. [13].

In addition, it is possible to calculate numerically the inter-
nd auto-correlations between the different phases from the
hree-phase images. Theoretically, the three-phase functions
k(x) can be defined as

k(x) =
{

1 if Z(x) = ωk

0 otherwise
The expected value (denoted by an overbar) of Zk(x) is the
robability of the presence of this phase:

k = Zk(x)

o
t

o

Fig. 3. The global correlation function of the TEM image (Fig. 1(a)).

Here χk should be equal to δk in Eq. (1) if Ia and Ib are
etermined from δk. Notice that χ =∑3

k=1ωkχk. The correla-
ion function RZk,Zm (u) is the two-point correlation function,
hich is the probability that one point at a distance x belongs

o phase k and one point at a distance x + u is phase m. The
efinition of RZk,Zm (u) is

Zk,Zm (u) = (Zk(x) − χk)(Zm(x + u) − χm)√
(χk + χ2

k)(χm + χ2
m)

(k, m = 1, 2, 3) (4)

So from three-phase images (Fig. 2), the cross- and auto-
orrelation relationship can be calculated, as shown in Fig. 4
here (a) is the auto-correlation functions and (b) is the cross-

orrelation functions between phases.
In this section, the segmentation of a gray image of an actual

L is performed based on mass ratios and physical constants of
he components. In addition, the global correlation function, as
ell as functions between phases, can be calculated.

.2. Initial reconstruction based on the filtering method

The reconstruction of microstructure in CLs can be achieved
ased on feature extraction of an actual three-phase CL. We seek
o generate a random porous microstructure containing three
hases, each having a specified volume fraction δk. The over-
ll correlation function RZ(u) is given (Eq. (3) and Fig. 3). An
xtensively examined reconstruction method, called the filtering
ethod, is based on successively passing a normalized uncor-

elated random Gaussian field through first a linear and then
nonlinear filter to yield the discrete values, which represent

he phases of the structure. In this section, the filtering method
s used to reconstruct an initial value for subsequent stochastic

ptimization. The reason for this will be discussed at the end of
his section.

Reconstructing a three-phase medium is done by thresh-
lding a continuous Gaussian field. The initial reconstructed
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Fig. 4. The cross- and auto-correlatio

icrostructure consisting of a Gaussian distributed random field
is generated using Marsaglia’s ziggurat algorithm [16], as

hown in Fig. 5(a). This independent Gaussian field X is con-
oluted by one constructed linear filter and forms another field
that is still Gaussian distributed but correlated. The nonlinear
lter then performs a threshold cut to the field Y to generate the
nal reconstructed structure Z. The following will gives the con-
truction and influence of these filters and relates their properties
o the statistical properties of the resulting fields. The construc-
ion of filters is called an inverse problem by Losic et al. [17].
or practical purposes, the porous microstructure is constructed

n a discrete manner. It is considered to be composed of Nx × Ny

in Fig. 5(a), Nx = Ny = 200) small squares, each of the same size
. These elementary squares are filled with either voids, Nafion,
r C/Pt agglomerate. Hence, the spatial variables x and u in Eqs.
3) and (4) will take only discrete values; the corresponding trios
f integers are denoted by

x = (i, j) ∗ a and u = (r, s) ∗ a, i, r ∈ [1, Nx];

j, s ∈ [1, Ny] (5)
Moreover, a set of strictly increasing constants {bi, i = 0, 1,
. ., n} with b0 = 0 and bn = 1 is constructed. It partitions the
nterval [0, 1] into n segments Ii = [bi − 1, bi], I = 1, 2, . . ., n.
ccordingly, the set � of real numbers is partitioned into the

c

R

ig. 5. (a) Uncorrelated Gaussian distributed random field. Here Nx = Ny = 200; (b) co
inear filter applied.
tionships of TEM image (Fig. 1(a)).

amily of interval

i = [Φ−1(bi−1), Φ−1(bi)] (6)

here Φ(y) is the Gaussian probability distribution function
PDF); that is,

(y) = 1√
2�

∫ y

−∞
exp

(
− t2

2

)
dt (7)

A value of ωk among the possible values of Z in Eq. (2) is
ssociated with each of these segments Ji; that is, each part is
onsidered to belong to one of three phases. Note that n can be
arger than three, but is not necessarily equal; several zones can
orrespond to the same phase.

The most difficult point is the determination of the linear fil-
er. One can start from the fact that the random vector (Y(x),
(x + u)), after a filter is applied, is a bivariate Gaussian whose
robability density is known; this density can be expanded in
erms of Hermite polynomials. After some systematic manipu-
ations, which use classical identities [18], the target correlation
unction RZ(u) can be expressed as a series in terms of the

orrelation function of Y, RY(u):

Z(u) =
∞∑

m=0

C2
mRm

Y (u) (8)

efficients of linear filter; (c) correlated Gaussian distributed random field after
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The coefficients Cm are given by

m = 1√
2πm!σz

n∑
i=1

ωi

∫ Φ−1(bi)

Φ−1(bi−1)
e−(y2/2)Hm(y) dy

here Φ(y) is the Gaussian PDF (Eq. (7)), bi is the strictly
ncreasing constants set defined in Eq. (6), σz is the square root
f the variance of the random variable Z and Hm(y) are Hermite
olynomials. They may be expressed as

2
z =

(
3∑

k=1

χkω
2
k

)
−
(

3∑
k=1

χkω
2
k

)2

m(y) = (−1)m exp

(
y2

2

)
dm

dym

(
exp

(
−y2

2

))

When χk is given from Section 2.1, the correlation function
Y(u) is easily derived from RZ(u), based on Eq. (3). This simply
orresponds to the numerical inversion of Eq. (8) by any stan-
ard method. In our reconstruction, an algorithm developed by
ekker [19] uses a combination of bisection, secant, and inverse
uadratic interpolation methods.

Once RY(u) is known, the linear filter may be constructed. A
inear operator can be defined by an array of coefficients c(v),
here v belongs to a finite square [0, Lc]2 in Z2. Outside this

quare, it is equal to 0. A new random field Y(x) can be expressed
s a linear combination of the uncorrelated Gaussian random
ariables X(x),

(x) =
∑

v ∈ [0,Lc]2

c(v)X(x + v) (9)

Their correlation function RY(u) is easily seen to be

Y (u) =
∑

2

c(v)c(v + u) (10)
v ∈ [0,Lc]

f the variance of Y(x) is equal to 1.
For isotropic media and the discretization of microstructure

Eq. (5)), the number of coefficients c in the linear filter can be

o
t
i

ig. 6. (a) Three-phase reconstructed microstructure (black pixels represents C/Pt ag
unction of reconstructed microstructure.
ources 175 (2008) 712–723 717

reatly reduced since c is now a function of only the distance

(v) = c(r, s) = c(
√

r2 + s2) = c(d) (11)

here d is the distance. Substituting Eq. (11) into Eq. (10), one
an determine the function c from nonlinear equations:

∑
∈ [0,Lc]2

c(
√

r2 + s2)c(
√

(r + u)2 + s2) = RY (u) (12)

In our simulation, the nonlinear least squares curve-fitting
lgorithm is utilized to obtain the coefficients c in the linear
lter from Eq. (12). The coefficients c are shown in Fig. 5(b).

The random field Y(x) (shown in Fig. 5 (c)) is correlated after
he linear filter (Eq. (9)) is applied. But this is still not satisfactory
ince it takes its value in �, while the CL must be represented
y a three-valued field Z(x). In order to extract such a field from
(x), a nonlinear filter G is applied; that is, the random variable
is a deterministic function of Y, Z = G(Y). When the value y of

he random variable Y(x) falls within the interval Ji (Eq. (6)), Z
s set to the corresponding value ωi

= G(Y ) = ωi if y ∈ Ji

Obviously, the probability of each ωi is equal to χk if the
ollowing condition is fulfilled∑
i=ωk

(bi − bi−1) = χk

At this point, the nonlinear filter is constructed to correlate
he random field in � to the three-phase field Z, which is the
econstruction of the microstructure. Fig. 6(a) shows the result
fter the nonlinear filter is applied to Fig. 5(c). The overall corre-
ation function of Fig. 6(a) can be evaluated based on the method
roposed in Section 2.1, as shown in Fig. 6(b). It can be seen
hat the difference between the reconstructed and target corre-
ation functions is relatively small, especially in the short-range
orrelation.
In the previous filtering method, the only correlation imposed
n the process is the global correlation function (Eq. (3)). Hence,
he cross-correlation relationship between the different phases
n the reconstructed media should be examined to verify the

glomerate, gray pixels are Nafion and white are pore); (b) overall correlation
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ig. 7. The auto-correlation relationship of pore in both reconstructed
icrostructure and experimental image.

esults. The auto-correlation of pore phases is calculated accord-
ng to Eq. (4) and Fig. 6(a) and shown in Fig. 7. Although
he trend of auto-correlation functions between different phases
ollows that of experimental ones, there are clearly noticeable
iscrepancies between them. This can be considered to be one of
rawbacks of using the filtering method to reconstruct multiple-
hase microstructure.

In fact, it should be emphasized that there are several arti-
cial parameters introduced in the filtering method: the size of

he generated microstructure Nx and Ny, the cutoff maximum
in the infinity series of the linear filter (Eq. (8)), the length

f the linear filter’s square Lc (Eq. (9)), and number of seg-
ent intervals in [0, 1] n for constructing the nonlinear filter.
hese parameters dramatically influence the reconstruction of

he microstructure [13] and are also a key problem of the filtering
ethod for reconstruction.
Moreover, it is difficult to extend the Gaussian filter-

ng method to incorporate non-Gaussian statistics. Hence the
ethod is model-dependent; that is, it depends on the underly-

ng Gaussian statistics. So in our proposed reconstruction, the
esults of the filtering method are used as the initial value for
tochastic optimization for reconstruction.

.3. Stochastic optimization for reconstruction

Clearly, the filtering method with the conventional overall
orrelation function alone may not be adequate to characterize
he microstructure of multiphase media for accurate reconstruc-
ion. It is desirable that a reconstruction procedure has the ability
o incorporate as much crucial microstructure information as
ossible to capture the salient features of the reference structure.

Recently, Torquato et al. [12,20–22] developed a reconstruc-
ion procedure based on a stochastic optimization technique.

tarting from an initial realization of the random medium, the
ethod proceeds to find a realization in which the calculated

orrelation functions best match the target functions. This is
chieved by minimizing the sum of squared differences between

a
b

f

ources 175 (2008) 712–723

he calculated and target functions via a stochastic optimization
echnique, such as the simulated annealing method [14].

Although the filtering method has several disadvantages, it
ives us a good starting point for reconstruction. So in this paper,
tochastic optimization starts from the reconstruction of the fil-
ering method. The advantage of this initial value of optimization
ill be presented at the end of this section. Now, we will focus on

he key points of stochastic optimization for the reconstruction
f microstructures in CLs.

Consider the reference (experimental) three-phase cross-
orrelation functions RZk,Zm (k, m = 1, 2, 3) of a CL presented in
ection 2.1 and calculated from the 2D experimental images. Let




Zk,Zm be the corresponding correlation function of the recon-
tructed microstructure (with periodic boundary conditions) at
ome time step. It is this microstructure that we will attempt
o evolve towards RZk,Zm from the reconstruction result of the
ltering method.

At any particular time step, a fictitious energy E can be defined
s

=
∑

u

∑
k,m

[


RZk,Zm (u) − RZk,Zm (u)]2

here the sum of u is over all discrete values of the gener-
ted microstructure (Eq. (5)) and the indexes k and m denote
he type of the different phases. To evolve the microstructure
owards RZk,Zm (i.e., minimizing E), we interchange the states
f two arbitrarily selected pixels of different phases, automati-
ally preserving the volume fraction of both phases. After the
nterchange is performed, the new energy E′ and the energy dif-
erence �E = E′ − E can be calculated. This phase interchange
s then accepted with some probability p(�E) that depends on

E. Here the probability is given by the Boltzmann distribution;
hat is, the Metropolis acceptance rule [20]

(�E) =
{

1 �E ≤ 0

exp(−�E/T ) �E > 0

here T is a fictitious temperature. This is the concept of a sim-
lated annealing schedule. The cooling or annealing schedule,
hich governs the value and rate of change of T, is chosen to
e sufficiently slow to allow the system to evolve to the desired
tate as quickly as possible without trapping in any local energy
inima (metastable states). At each annealing step k, the sys-

em is allowed to evolve long enough to thermalize at T(k). The
emperature is then lowered according to a prescribed anneal-
ng schedule T(k) until the energy of the system approaches its
round state value within an acceptable tolerance.

In our reconstruction procedure, the system evolves through
he logarithmic annealing schedule, which decreases the ficti-
ious temperature to the ground state according to T(k) ∼ 1/ln (k).

logarithmic decrease may cause very slow convergence. Thus,
or practical purposes, we adopt the more popular and faster
nnealing schedule T(k)/T(0) = λk, where the constant λ is the

nnealing rate which must be less than butclose to 1 and assumed
efore annealing. More detail can be found in Ref. [14].

As a matter of fact, the optimization problem normally
aces the same challenge, the sensitivity of the initial value.
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ig. 8. (a) Microstructure reconstruction after stochastic optimization (initial p
nd white are pore); (b) “temperature” dependence of configuration energy.

he character of the energy landscape determines how closely
ne can numerically approach the true global minimum. In
eneral, bad initial values of optimization will result in both
ocal metastable states and meaningless computation time. To
void this effect, two kinds of reconstruction are proposed.
ne starts from a random three-phase pattern, while the other

s based on the result of the filtering method (Fig. 6(a)). In
he latter, the result of the filtering method is chosen as the
nitial value of stochastic optimization and it has been ver-
fied that the overall correlation function (Fig. 6(b)) recurs
he target one better. Fig. 8(a) shows the result of stochastic

ptimization.

Fig. 8(b) shows the “temperature” dependence of configura-
ion energy E. The optimization computational time cost of the
nitial random pattern is 18,061.31 s while, if we start from the

m
d
t
e

ig. 9. (a)–(e) Five different microstructure reconstructions used to simulate the mic
ray pixels are Nafion, and white are pore); (f) the auto-correlation relationship of po
is Fig. 12(a), black pixels represent C/Pt agglomerate, gray pixels are Nafion,

esult of the filtering method, the computational time is about
ne fourth of that (i.e., 4615.22 s). These reconstructions show
he advantages of using the results from the filtering method.
oing so makes the energy less than the random initial value

nd saves computational time.
Moreover, the lower order correlation functions do not con-

ain complete morphological information and thus they cannot
niquely characterize the microstructure, even if the global
inimum is achieved. The generated microstructures do not nec-

ssarily contain the same statistical information beyond what is
mposed, even though a naked-eye comparison is many times
ore insensitive to such differences. So we reconstruct five
ifferent microstructures (Fig. 9, Nx = Ny = 20) to understand
he mechanical mechanism of microstructure changes due to
nvironmental change. According to Fig. 9(f), the correlation

rostructural changing (Nx = Ny = 20, black pixels represent C/Pt agglomerate,
re in these reconstructed microstructures and experimental image.
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ig. 10. Different phases in CLs, where the dashed line is the boundary of Nafion
nd the C/Pt agglomerate, and solid lines are the boundaries of pore and the other
wo components.

unctions of pores in these microstructure reconstructions are
ood estimators of that of the experimental image.

In summary, the microstructure in CLs is recurred through
reconstruction procedure. Firstly, the experimental image is

nalyzed and the correlation functions of phases are extracted
s the target of reconstruction. Secondly, the filtering method
s utilized to give us the initial estimation of reconstruction.
inally, the stochastic optimization is applied to get the final
econstruction.

. Mechanical analysis of microstructure changes

As indicated in Section 2, the reconstruction process is based
n the experimental work of Xie et al. [15]. Based on the experi-
ental TEM images of CLs after fabrication, the reconstruction
s processed with the stochastic optimization method.
Once the microstructure is reconstructed and the constituent

hases (i.e., carbon/catalyst agglomerate, pore, and electrolyte
hases) are identified, the mechanical analysis can be performed

a
p

i

ig. 11. (a) The piecewise linear constitutive relationship of Nafion adopted in the m
ources 175 (2008) 712–723

n the reconstructed CL. The mechanical analysis model, devel-
ped for fictitious microstructure changes in our companion
aper [7], is extended here to investigate the changes in recon-
tructed microstructure due to environmental change, such as
hermal and humidity cycles during the start-up and shutdown
f the fuel cell.

As indicated in Fig. 10, there are three different phases in CLs:
lectrolyte (Nafion), pore, and carbon/catalyst (Pt) agglomerate.
n our model, two components (Nafion and the C/Pt agglomer-
te) are meshed in the domain for the sake of the finite element
ethod. The pore phase is considered as void in the solid.
o simulate the mechanical response of Nafion and the C/Pt
gglomerate, the rate-independence constitutive relationship is
pplied to depict the relationship between the force and defor-
ation in them. It is assumed that the carbon and platinum have a

inear-elastic behaviour and do not swell in response to moisture.
ased on many mechanical experimental results, the piecewise

inear isotropic elastic-plastic-failure model (Fig. 11(a)) is pro-
osed to describe the behaviour of Nafion. The parameters in the
odel are Young’s modulus E0, plastic modulus E1, static yield

tress σp0, and failure stress σs. These parameters depend on
hanges in moisture and temperature. Two-dimensional inter-
olation is used to obtain all data between discrete experimental
ata points. Young’s modulus E0, for example, is shown in
ig. 11(b) and the following

E0

E0r
=
[

1.9

(
RH

RHr

)2

− 20.2

(
RH

RHr

)
+ 57500

]

×
(

0.023

(
T

Tr

)2

− 0.213

(
T

Tr

)
+ 387

)

here RHr, Tr, and E0r are the reference values of humidity,
emperature, and Young’s modulus, respectively. The reference
oung’s modulus is input as the value (226.2 MPa) at 30% RH

nd 25 ◦C. The other parameters can be found in our companion
aper [7].

In addition, to simulate the debonding phenomena (or delam-
nation) between Nafion and the C/Pt agglomerate, the cohesive

odel; (b) Young’s modulus as functions of temperature and relative humidity.
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one model (CZM) is applied to mimic the boundary of these
wo phases, indicated as a dashed line in Fig. 10. The CZM is, in
act, a model that adopts softening relationships between forces
nd separations, which in turn introduce a critical fracture energy
hat is also the energy required to break apart the interfaces. The
arameters in the CZM can be determined through the empirical
elationship between the boundary and bulk material. It should
e mentioned that the constitutive relation for each cohesive
urface is taken to be elastic so that any dissipation associated
ith separation is ignored. So the failure of CZM elements is
anually considered when the strain in the CZM exceeds one

nitial strain strength for the statistics of interface failure between
afion and the C/Pt agglomerate; that is, for one CZM element,

f

ax

(
δn

δ̄n

,
δt

δ̄t

)
> c0 (13)

he element is considered to be a failed one. Here δn is the normal
eparation across the interface, δt is the shear separation along
he interface, δ̄n is the normal separation where the maximum
ormal traction is attained with δt = 0, δ̄t is the shear separation
here the maximum shear traction is attained at δt = δ̄t/

√
2;

nd c0 is the coefficient corresponding to the maximum strain
f interfaces.

When fuel cells start-up and shutdown, the humidity and tem-
erature in the CLs will change, and the Nafion will swell or
hrink. Therefore, the Nafion will come into contact with the
/Pt agglomerate or with another Nafion domain. So, the contact
odel is used on the boundary between the pore and the other

wo components (solid lines in Fig. 10). All of these contact pairs
nclude the effect of friction, in which the coefficient of friction
s determined through experiment [23]. It should be noted that
hese contacts have no stickiness; that is, when the normal force
cross the interface is traction, the contact phenomenon will
isappear.

In summary, the finite element method, with the support of
he CZM and the frictional contact model, is proposed to obtain
he mechanical response of CLs. The parameters in the CZM and

he contact model can be determined from the empirical relation,
s done in Part I. With the finite element method simulation,
he underlying mechanism of the changes of the reconstructed

icrostructure can be understood.

b
e
f
c

Fig. 12. The schematic graph of relative hum
ources 175 (2008) 712–723 721

. Mechanism of reconstructed microstructure changes

According to observations, cracks and delamination can be
ound in the aging CLs of PEM fuel cells. The finite element
ethod, along with the CZM and the frictional contact model

7], is proposed for the investigation of mechanical degradation
f CLs under hydrothermal cycles, simulating the start-up and
hutdown of PEM fuel cells.

The temperature and humidity profiles come from Ref. [24].
he driving forces behind the simulation are the cycled changes
f relative humidity (RH) and temperature (T), as shown in
ig. 12 where the initial phase difference between the RH cycle
nd the T cycle is t0 = 2 s, and the period of humidity and temper-
ture are tRH = tT = 400 s. The maximum and minimum relative
umidity are RHmax = 90%, and RHmin = 30%, respectively.
he maximum and minimum temperature are Tmax = 85 ◦C and
min = 25 ◦C, respectively.

The 2D reconstruction of the microstructure in CLs was
hown in Fig. 9. This problem is also considered to be a plane
train problem because the thickness of CLs is much smaller
han the planar dimension.

The commercial software ANSYS is used to conduct the sim-
lations. The data used to simulate the reconstructed CL come
rom the results of stochastic optimization for reconstruction. At
he beginning of analysis, the topology of the microstructure is

odified because of constraints and singularity. Although these
odifications are very small, especially in cases with large sam-

les (i.e., for large Nx and Ny), they are very important to the
onvergence of computation.

The mesh is done in ANSYS and shown in Fig. 13. The
eriodic boundary condition is applied on the four boundaries
f the whole computational domain to avoid the effect of size.
o simulate the interface effect between Nafion and the C/Pt
gglomerate, the CZM is used on the boundary between them.
he frictional contact model is used to simulate the contact
henomenon.

Based on this simulation, Fig. 14 shows the evolution of
oth delamination fracture energy and plastic Mises strain.
ig. 14(a) shows two areas which will be examined more closely

n Fig. 14(b) and (c) to investigate the delamination energy and
lastic strain, respectively. When the humidity and temperature

egin to increase, the Nafion swells and delamination fracture
nergy accumulates. When Eq. (13) is satisfied as the result of
racture energy accumulation in one element, this element is
onsidered to be the failure one. So as Fig. 14(b) shows, the

idity and temperature cycled change.
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ig. 13. Mesh result of reconstructed microstructure with symmetric boundary
ondition.

lement (indicated with di) at the triple boundary of Nafion,
/Pt agglomerate, and pore failed at 60 s. Meanwhile, the plastic

train accumulates in the Nafion. At 1612 s, there was crack initi-
tion in the Nafion (as indicated with ci in Fig. 14(c)). Therefore,
s humidity and temperature cycle, the plastic strain accumulates
n the Nafion, resulting in fatigue (Fig. 14(c)). Thus there is

ompetition between the Nafion’s yield failure and Nafion-C/Pt
gglomerate delamination because of the cyclic environmental
hanges.

C
i
n

ig. 14. (a) Elements in reconstructed microstructure, where the b and c boxes are a
nergy accumulation on the interface between Nafion and the C/Pt agglomerate at 60
ises strain pattern at 1612 s, where ci represents the initiation position of crack in th
ources 175 (2008) 712–723

As we know, the microstructure based on stochastic opti-
ization is not unique; that is, a single microstructure cannot be

etermined by a few lower order correlation functions, perhaps
ecause optimization is not the true global minimum and the
ptimization process is sensitive to the initial pattern of recon-
truction. So different microstructures should be simulated to
nvestigate the common underlying mechanism of microstruc-
ure changes in CLs.

However, many factors in the microstructure have complex
nfluences on the electrochemical performance of fuel cells.
hase connectivity is one of them. Here phase connectivity
eans the interface between different solid phases in CLs. It

s the key factor in determining effective contact area, effective
hemical reaction rate, and percolation limits. In experiments,
t is hard to observe the evolution of these interfaces. However,
rom the mechanical analysis, the interfaces between Nafion and
he C/Pt agglomerate can be determined by simply calculating
he contact length between them.

Five different microstructures (Fig. 9) were simulated under
yclic changes of humidity and temperature. The accumulation
f both delamination energy and plastic energy were observed
n these simulations. The competition between the accumulation
f delamination energy and the accumulation of plastic strain
energy) plays a key role in microstructure changes.

As a result of the simulation results for these five different
icrostructures, the phase connectivity can be measured after

everal cycles, as shown in Fig. 15, where �L represents the
/Pt agglomerate. An increase in �L means a decrease in the
nterfaces between Nafion and the C/Pt agglomerate. The con-
ectivity decreases by more than 3% of the whole initial phase

reas which will be investigated in subfigures (b) and (c); (b) the delamination
s, where di represents the initiation position of the delamination; (c) the plastic
e Nafion.
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onnectivity after 200 cycles for all five samples. Although there
re various sample-specific microstructure changes in the five
amples, the increase in connectivity change is a common feature
nd is a very important indication of the decay in performance.

These simulations clearly demonstrate that the mechanical
echanism underlying the microstructure changes for CLs is

he competition between delamination energy accumulation on
he interface between different solid phases and plasticity accu-

ulation in the Nafion.

. Conclusions

Based on experimental images of CLs, statistical features
re extracted and are used to reconstruct the microstructure in
Ls. The reconstruction process is accomplished in two steps.
ne is the filtering method, which changes the Gaussian dis-

ributed signals to three-phase microstructure reconstruction.
he other is the stochastic optimization method, which refines

he microstructure reconstruction to fit the statistical features of
he experimental images.

To understand the underlying mechanical mechanism of
icrostructure changes, the reconstructed microstructure of CLs

ubjected to hydrothermal loading cycles is investigated. The
echanical analysis model developed in our companion paper

7] is extended to calculate the reconstructed microstructure
hanges. Numerical simulation shows that delamination and
racture phenomena do happen in the CLs after certain duty
ycles of humidity and temperature, as the competition between
he plasticity energy accumulation in the Nafion and the delam-

nation energy accumulation on the interface between Nafion
nd the C/Pt agglomerate. Although different reconstructed
icrostructures show sample specific results, a common trend

an be observed in the simulation results. That is, the cycled

[
[
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hange of environment causes a decrease in connection between
ifferent solid phases, which may be an indication of perfor-
ance degradation.
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